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Abstract
Purpose of Review Climate change and associated ecological impacts have challenged many conventional, observation-based
approaches for predicting ecosystem and landscape responses to natural resource management. Complex spatial ecological
models provide powerful, flexible tools which managers and others can use to make inferences about management impacts on
future, no-analog landscape conditions. However, land managers who wish to use ecosystem and landscape models for natural
resource applications are faced with the difficult task of deciding among many models that differ in important ways. Here, we
summarize a process to aid managers in the selection of an appropriate model for natural resource management.
Recent Findings To guide management planning, scientifically credible information on how landscapes will respond to man-
agement actions under changing climate is required. Landscape models are increasingly used in a management context to
evaluate of impacts of changing climate and interacting stressors on ecosystems and to test effects of alternative management
options on desired conditions. However, the wide range of available models makes selection of appropriate and viable models a
complex process.
Summary We present a series of preliminary steps to define critical scales of time, space, and ecological organization to guide an
experimental design for a modeling project and then list a set of criteria for selecting a landscape or ecological model. Material
presented includes the preliminary steps (crafting modeling objective, designing modeling project), organizational concerns
(resources available, expertise on hand, timelines), and modeling details (complexity, design, documentation) of model selection.

Keywords Landscapeecologicalsimulationmodel .Modelingobjective .Simulation landscape .Computing resources .Software
and hardware requirements

Introduction

Natural resource management depends on scientifically cred-
ible projections of future conditions under both passive and
active managements to plan and implement desired actions

[1–3]. Historically, land management professionals used re-
sults from empirical studies, coupled with their own expertise
and wisdom, to plan and evaluate management activities.
However, changes in the Earth’s climate systems due to green-
house warming may create new climate futures that have few
analogs in the past [4, 5]. As a result, past empirical studies
and the accrued wisdom of the last 100 years may not be
entirely appropriate for the management of tomorrow’s land-
scapes [6, 7]. Adding to the problem are the invasion of ex-
otics, a legacy of past management actions, and the expansion
of the human footprint across landscapes, all of which con-
tribute to increasingly novel environments and different man-
agement challenges [8–10]. Landscape models are increasing-
ly used to integrate relevant historical information with well-
studied physical, chemical, and biological relationships to pro-
ject the consequences of alternative land management actions
across space into our new future [11, 12].
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Landscape simulation models are important tools for land
management because they provide a means to synthesize
state-of-the-art knowledge, current research findings, and gen-
eral information to understand ecosystems and landscape dy-
namics [13]. Myriad interacting and highly dynamic ecologi-
cal processes result in diverse and potentially unexpected bi-
otic and abiotic responses [14–16], making it nearly impossi-
ble for one person to understand the effects of all possible
interactions across relevant spatial and temporal scales and
somewhat impractical to collect enough data on these interac-
tions to completely understand their consequences for land
management [6, 7, 17]. Landscape models can be used to
extrapolate spotty empirical data over larger areas and longer
time spans to provide greater spatiotemporal scope for man-
agement decisions [18]. Moreover, these models identify
those ecological processes that are poorly understood and
need for further research [19, 20].

Perhaps the greatest strength of ecological modeling in land
management is its ability to compare effects of alternative
actions on management targets or desired goals [21–23]; the
impacts of varying levels of fire suppression are, for example,
on subsequent fire activity [24], vegetation, and stream ther-
mal regimes [25]. However, deciding which management ac-
tions and disturbance agents to include in a model is one of the
most demanding tasks of a modeler [26, 27]. Landscape
models can also be used for many other types of management
applications, from planning to real-time decision making [28],
and they can be used across the many organizational levels of
management, especially when climate and disturbance re-
gimes are expected to change over time [29, 30] (Fig. 1).

Land managers who want to use landscape models are
often faced with the difficult task of deciding which model
to use. There are numerous research and management-
oriented models that were developed by different modelers
for different purposes and for different ecosystems [32–35].
Keane et al. [33], for example, evaluated 44 landscape models
that simulate vegetation and fire dynamics. It would be diffi-
cult for any manager to devote enough time to develop a deep
knowledge of all available modeling systems—it is just too
complicated, especially as climate change becomes increas-
ingly important [36]. In this paper, we summarize a process
to aid managers in the selection of an appropriate model for
natural resource management applications, including prelimi-
nary steps that frame the selection process and then a set of
criteria for selecting a specific landscape model. This process
will clearly identify the most appropriate landscape model that
provides much-needed, scientifically credible information on
how landscapes will respond to changes in climate, distur-
bance, and human activity [37, 38].

Modeling Primer

Landscape and ecosystem models range in complexity from
simple conceptual models such as state-and-transition models
that simulate vegetation dynamics using discrete successional
pathways [39–43] to complex biogeochemical models that
explain vegetation processes and related energy and matter
exchanges between vegetation, soil, and the atmosphere
[44–46]. Other models of intermediate complexity include

Fig. 1 A summary of the ways
models can be used in natural
resource decision making across
temporal and spatial scales.
Adapted from Reinhardt et al.
[31] and taken from Keane [16]
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cohort models that simulate vegetation abundance by diameter
or cover classes [35] and spatial gap models that mechanisti-
cally simulate growth, mortality, and regeneration of individ-
ual plants [23]. We feel that there are no “bad”models as most
were successful for their designed purpose, but the usefulness
of any model depends on its appropriate application for a
given objective. Landscape models have been described ac-
cording to their levels of complexity, design, spatial dynamics,
and scales [33, 47, 48].

Complexity

The simple-to-complex gradient (Fig. 2) provides a straight-
forward way to evaluate ecosystem and landscape models
[48]. Simple models are easier to learn, use, and interpret but
have a limited set of output variables that are often highly
dependent on input parameters [47]. Complex models require
abundant training, greater computing resources, longer simu-
lation times, and more data to implement [49] but provide
greater exploratory power and an extensive array of output
variables. Complex models also provide the ability to explic-
itly simulate emergent and dynamic processes such as climate
change impacts or disturbance interactions [50]. There are
always tradeoffs betweenmodel complexity and practical util-
ity for any particular problem, and a model’s structure should
be consistent with both the question(s) asked and the assess-
ments being made by the manager [51].

Design

The inherent design and structure of the model is also
important to model selection, but describing the design
of a model is a complex and demanding task. For sim-
plicity, we use pairs of contrasting terms to describe the
general design and application of the models, but com-
monly, most models are created using a mixture of the
following design elements.

Stochastic vs. Deterministic Models Stochastic models use
probability functions to represent highly dimensional
ecological processes with complicated behavior over an
extensive range of spatial and temporal scales of vari-
ability [52]; ignition locations of wildland fires, for ex-
ample, are often represented by a probabilistic model
based on fuel, weather, and topography variables be-
cause the process of ignition is highly uncertain and
complex [53]. Stochastic models produce realistic vari-
ability in the trajectories of their state variables through
time, whereas deterministic models describe the relation-
ships between model variables using mathematical equa-
tions or rules. Deterministic models have no random
components and therefore always give the same results
thereby lowering simulation times and simplifying anal-
yses. These models assume that the future responses of
a system are completely determined by present-state,
measured inputs [27, 51, 54].

Fig. 2 The tradeoffs between
simple and complex models and
the relative magnitude of several
characteristics for simple to
complex models for a number of
tasks. The width of the triangle
represents the magnitude of that
characteristic. Increasing effort
triangles are in black, and
decreasing efforts are in blue
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Empirical vs. Mechanistic Models Empirical models represent
relationships determined strictly by data, such as growth and
yield models [55], and are most useful when used within the
bounds of the data with which they are developed [51]. An
example might be a regression equation relating annual net
primary production to annual precipitation and temperature
[56]. When used within the range of precipitation and temper-
ature included in the formulation of the regression equation,
the model can produce realistic predictions, but the model
may fail when applied to conditions outside the range of the
input data, such as new climates or to a different ecosystem
[57]. Mechanistic, or process-based, models use ecophysio-
logical and physical equations and algorithms to simulate spe-
cific ecological processes such as seed dispersal or wildfire
spread and describe cause and effect relationships (e.g., how
abiotic environmental factors, disturbances and management
activities interact to affect tree species and age composition
and their spatial patterns, and other ecosystem attributes) [7,
58]. Because these models are not constrained by parameter
estimations reflecting past conditions, they provide a useful
framework for exploring diverse ecosystem responses to al-
tered environmental conditions. As a result, these models can
offer significant advantages in predicting the effects of global
change as compared to purely empirical models [11].

Spatial Dynamics

Spatially explicit models consider both ecological relation-
ships (e.g., species and their habitats) and the arrangement of
landscape features (e.g., habitat characteristics) in space and
time [12, 59, 60]. These models can address questions of
fragmentation, patch size, and landscape heterogeneity and
incorporate important spatial processes, such as seed or animal
dispersal, wildfire spread, and interactions of species or com-
munities across environmental gradients [61, 62]. Spatially
explicit models may be required if the project objectives are
focused on a question such as whether changes in fire frequen-
cy or area burned may affect the spatial distribution of a tree
species [51]. Non-spatial models, such as the VDDT state-
and-transition model [63], ignore spatial relationships for sim-
plicity in design. A stand-level model where input and output
apply to a specific pixel or polygon, for example, may simpli-
fy ecological processes to reflect only stand-level processes
such as tree growth and competition, without incorporating
the interactions from neighboring stands or the effects of
broad scale ecological processes such as disturbance.

Scale

Spatiotemporal scale in a modeling context refers to both the
resolution (spatial grain size, or time step) and extent (time
span, space domain, and number of components modeled) of
the simulation [64]. Recent technological advances in remote

sensing, GIS, and computational power have enabled models
to be built at increasingly finer resolutions over increasingly
larger spatial scales and longer time periods [65] (Fig. 1).
Often, the integration of environmental information across
various ecological scales—such as combining coarse-scale
climate drivers with finer-scale land cover information—can
improve understanding of fundamental ecological processes
and enable improved model predictions of landscape patterns
under changing environmental conditions [66]. If a model’s
native pixel size is large (e.g., > 100 m) or if modeled entities
are broad (e.g., cover types), then the model might have lim-
ited application to detailed investigations of individual-species
responses to processes operating at scales finer than the
model’s designed spatial (e.g., pixel size), temporal (e.g., time
step), and organizational (e.g., variables) resolution [67].

Model Application

Most modeling projects are accomplished in six major phases
spanning development of model inputs to analysis and interpre-
tation of outputs (Fig. 3): initialization, parameterization,
calibration, validation, execution, and analysis [13, 26, 27,
47, 49, 68, 69]. Knowledge of these phases will influence mod-
el selection because complex models often need more time for
some of these phases. Initialization (the process of quantifying
initial conditions that form the starting place for model simula-
tion) and parameterization (the quantification of parameters
needed by model algorithms to simulate ecological processes)
are required before a model can be run. The calibration phase,
in which model parameters are adjusted to better reflect the
ecological patterns and processes expected for a landscape, oc-
curs after a series of test simulations that verify the model is
working with initial conditions and parameters. Once the model
is calibrated, the validation phase estimates the accuracy and
precision of model results as compared with available empirical
data, historical records, or expert evaluation. Calibration and
validation provide several important aspects: [1] a notion of
the uncertainty and accuracy of model results, [2] confidence
in using the model, and [3] experience and knowledge of model
behavior important in the interpretation of model results.
Execution is the process of actually running the model to com-
plete the project experimental design under the simulation spe-
cifics, and analysis is the process of synthesizing and summa-
rizing model results, typically using statistical and spatial (e.g.,
GIS) analytical platforms.

Preliminary Steps Before Model Selection

There are important preliminary steps that managers should
complete before evaluation to ensure that the best model is
selected for their application. In this paper, we assume that the
user wishes to use a spatially explicit landscape model for
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their project, but we also recognize these steps can be used for
any spatial or non-spatial ecological model.

Craft a Succinct Modeling Objective

The most important phase in any modeling project is the design
of concrete modeling objectives [13]. The modeling objective
sets the context for the entire modeling project and forms the
sideboards of all future decision-making [70, 71]; decisions
made during a modeling project, such as which parameters to
use, how long to simulate, and how to summarize the results,
can only be done by referencing the objective. For example, a
modeling objective for evaluating changes in wildlife habitat in
response to timber management can be identified as “identify
short-term (< 5 years) and long-term (~ 80 years) impacts (pos-
itive or negative) of a range of harvest treatments on wildlife
species habitat in the Bitterroot drainage of western Montana,
and produce results that can be used to guide design of future
forest treatments to enhance habitat” [72].

Design Structure of Anticipated Results

Designing the tables and figures for portraying the anticipated
modeling results, even before a specific landscape model has
been selected, will help evaluate potential landscape models,
determine experimental design criteria (e.g., number of model
replications necessary to achieve sufficient statistical power),
and will save time and resources by eliminating unnecessary
exploration of modeling results in subsequent analysis. Using
the example in step 1, a table that has management alternatives
as columns, time spans (long vs short term) as rows, and acres
of wildlife habitat in each cell may help frame an evaluation of

models. There is nothing more frustrating than completing
months of simulations, only to find that the most appropriate
variables were never available from the selected model or
were not output in the desired format. Conversely, copious
output for numerous variables that then go unused in final
reporting can substantially increase simulation times and file
sizes and add unnecessary complexity to modeling projects.

Delineate the Simulation Landscape

It is important that a simulation area encompass a sufficient
amount of land to meet management objectives, while still
conforming to commonly used land management spatial do-
mains. For example, if hydrologic boundaries are used to de-
fine management zones, then a watershed may be the most
appropriate boundary to define the modeling extent. If the
modeling objective is focused on evaluating impacts of forest
treatments, the simulation area could be the proposed treat-
ment area and perhaps the surrounding area. A simulation
landscape must be large enough to encompass the spatial foot-
print of native ecological processes, while also matching man-
agement objectives. One general rule of thumb is that the
simulation landscape should be at least five times the expected
area of the largest important disturbance event. For example, if
large wildfires in the project area mentioned in the step 1
example are typically around 50,000 ha, the simulation land-
scape should be at least 250,000 ha and it should be centered
on the harvest areas. This may be difficult to accomplish given
the large size of many disturbances, and often, the available
data, computing resources, and project timeline will influence
decisions about the size of the simulation landscape. The risk
in using a small area, however, is the failure to fully capture

Fig. 3 The six critical phases of a
modeling project. Initialization
(light green) and parameterization
(orange) need to be complete
before validation and calibration.
Once the model is calibrated, the
model can be validated and the
simulation experiment can be
executed. Results of the model are
then analyzed, and summaries are
integrated into various reports and
publications. Arrows run in two
directions to denote that
initialization and parameterization
are constantly being redone based
on results of the calibration
process
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those landscape-level processes that are highly influential in
dictating ecological patterns. This may result in greater uncer-
tainty in simulating spatial patterns and can bias subsequent
model interpretation [67].

The shape of a simulation landscape is also an important
consideration. Any landscape should be delineated in a man-
ner that minimizes edge effects, which we define in the con-
text of ecological modeling as potential changes in ecological
patterns or processes that occur near the edges of the finite
simulation space [73]. Simulation landscapes that are long and
thin have a high perimeter to area ratio and therefore will be
subject to extensive edge effects if the selected model explic-
itly simulates spatial processes [74]. This occurs because land-
scape edges influence the spread of disturbance or vegetation
processes that occur outside of the landscape into the land-
scape or the spread from inside the landscape to outside the
landscape (e.g., seed dispersal, spread of fires) [75, 76]. The
most realistic method for minimizing edge effects is by creat-
ing a buffer around the target or context landscape [40, 73].
However, buffering can substantially increase the simulation
area, resulting in long simulation times and high memory re-
quirements; as a result, the buffer size is often adjusted to fit a
realistic project timeline or computational constraints.

Develop an Appropriate Experimental Design

After the objectives are defined, analysis and figures struc-
tures created, and the landscape delineated, a simulation “ex-
periment”must be designed to answer the specifications of the
objective. One approach to simulation design is to model a set
of alternatives that encompass the range of potential ecologi-
cal responses frommanagement actions. By varying particular
model inputs (e.g., future climates, grazing regimes, or poten-
tial for interacting stressors such as insect and disease out-
breaks) [16], modelers can explore the range of possible
landscape-level ecological impacts. This approach can be de-
scribed as conducting experiments in the “model” world to
obtain insights for resource management and evaluation
[77]. Using the example in step 1, four timber harvest scenar-
ios might be evaluated (none, clear-cut, partial cuts, and fuel
treatments). Usually, a statistical fully factorial approach is
used where various levels of climate, management, and other
factors of interest are implemented in combinations of factor-
levels often called “scenarios.” After all factors and levels are
designed, experimental specifications must be defined includ-
ing the number of replicates, the length of simulation time, and
the types of output and their reporting interval—all of which
influence model selection [13]. In our example, a simulation
time of 250 years with the wildlife habitat area response var-
iable reported at 50 and 250 years using 10 replicates may be
appropriate. Details of the experimental design can be refined
once a landscape model is selected for a project.

Create a List of Potential Models

We recommend that a comprehensive list of all potential
models be developed through a literature review or consulta-
tion with local modeling experts and other managers. This list
does not need to be exhaustive but should contain those
models that the users feel are most important for
accomplishing the objectives. In addition, the preliminary
modeling steps outlined above should be summarized and
documented to guide model selection via our seven model
selection criteria.

Landscape Model Selection Criteria

Although models have been acknowledged as important tools
for land management decision-making and planning [27, 51],
criteria for model selection for management applications are
rarely available in the literature. In general, model selection
will mostly depend on the objective, available resources, and
local ecological conditions, which makes developing project-
specific model selection criteria quite difficult. Instead, we
developed a set of seven questions that can be generalized
across management objectives to aid in selection of an appro-
priate landscape model.

Which Model Can Answer the Modeling Objective?

Well-defined modeling objectives identify those response vari-
ables that are necessary for subsequent analysis; therefore, a
suitable model will be one that includes these variables as out-
puts. A candidate model should also simulate those ecological
processes that are important to the project objectives in the form
of modules or algorithms that fully represent the spirit and
vision of the modeling objective. For example, using the exam-
ple in step 1 of the previous section, the candidate model(s)
should include explicit simulations of wildlife dynamics and
timber harvest actions at relevant scales, along with climate,
wildland fire, and wildfire suppression management.

Identifying a list of key ecological processes to match ob-
jectives is a fundamental step in evaluating the suitability of
candidate models. Models that do not simulate key distur-
bances (e.g., wildfires, insect outbreaks, plant invasions) that
influence real-world processes of interest may limit project
inferences. Models must also be capable of representing the
influences of topography, vegetation dynamics, and other key
environmental aspects on the ecological processes in the de-
lineated simulation area. Often, a model developed for one
particular landscape is highly constrained to reflect only the
important ecological processes influencing that landscape and
it is inflexible in its application to a new landscape (e.g., a
model developed for tropical forests may not be useable for
a boreal landscape).
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Which Model Is Most Appropriate for Project
Timelines?

Project timelines, rather than ecological complexity, may dic-
tate model selection. Projects that need to be done quickly will
demand simple models that are relatively easy to execute, ana-
lyze, and understand (Fig. 2). Longer projects may make use of
more complex models that allow for a wider scope of evalua-
tion. Users must remember that the execution of the model is
not the only task in a modeling project—initialization, param-
eterization, and calibration phases may require more time than
the actual simulations (see earlier sections). Unfortunately, it is
difficult to estimate development and execution times for
models that are unfamiliar to the user. The only way to obtain
this information is from the literature or in consultation with the
model developer or past users of the model.

Which Model Best Fits with Existing Computing
Resources?

It is crucial that the hardware and software requirements of the
landscape models match the available computer resources. A
complex model may require abundant computing resources
for normal simulations, which may be impossible when only
one computer with a single processor is available. All possible
computers available to the modeling project should be
inventoried, and their software and hardware specifics should
be noted as information for evaluation criteria. One of the
most important computing resources is the amount of memory
available for the model. Most models keep simulated variable
values in memory to reduce execution times, and when mem-
ory becomes full, the program slows to a crawl. Users should
assess the memory requirements of the available models and
the memory resources of the available computers. Sometimes,
memory can be upgraded and that cost should be also included
as evaluation criterion.

Is There Modeling Expertise Available to Run Each
Model?

It is important to identify those people that have the time,
knowledge, and experience in modeling to help in your pro-
ject. It may be more beneficial to use a modeling system in
which someone has expertise than to use an unknown model
that better meets the project objectives. It is also critical that
someone have the expertise to analyze model output for man-
agement plans. This criteria can be met by one person or by a
team of people; a team is always more effective because team
members can be used in other phases of the project including
evaluation of parameterization and calibration, creation of
analysis plans, and review of model results. It is also critically
important that the team has a broad ecological knowledge of

the ecosystem(s) being modeled to evaluate the degree of
realism in model results.

Are There Enough Data to Prepare Each Model?

We recommend an initial, thorough inventory of available
data to quantify initial conditions and parameters of a model
and to provide calibration metrics for evaluation of model
results. If the necessary data are unavailable, field campaigns
can be developed to provide data, or existing data from outside
sources might be identified. If data required for a particular
model are scarce, perhaps an alternative model should be con-
sidered, as high uncertainty in data inputs often results in
greater uncertainty in outputs. Data can come from many
sources, but often, model inputs can be “modeled” them-
selves; remotely sensed data, for example, can be used to
derive a classified map of vegetation types [31], or tree inven-
tories can be expanded for use across large land areas [78, 79].
Parameter values can also be derived from published litera-
ture, with careful consideration as they may or may not be
applicable to the specific context of a modeling project.

Which Model Best Matches the Resolution
of the Objective?

Some modeling objectives can be successfully completed
with broad general estimates, such as “yes” or “no” answers,
and this means that the resolutions of the output variables can
be coarse and the model results can be summarized to broad
ranges or thresholds. For other objectives, more specific infor-
mation, such as plant density, biomass, and productivity esti-
mates summarized by vegetation type and management zones,
may be required. If a project demands highly specific types of
detailed reports, then complex models are often the only alter-
native. It is important that the design of the landscape simula-
tion model match the precision of the project objectives.

Which Model Is Documented and Published?

Users can look to the publication record of a model in the
literature to demonstrate its acceptance within the science
and management communities. Important items to assess in-
clude [1] has the model been successfully implemented and
reported on by others, [2] are model results published in high
impact journals, and [3] is the application of the model con-
sistent with the current modeling project?

From a user’s perspective, it is important that the model is
well-documented, including ample information on using the
model and available example input files to demonstrate model
setup. A user’s manual is priceless for novice users. From an
advanced user’s perspective, it is important that the source
code of the model is accessible, well-documented, portable
(can be installed on a variety of operating systems), and
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stand-alone (does not require commercial software to run).
Open science principles are changing how models are devel-
oped and shared, such as Github for the LANDIS model [80]
and Frames for wildland fire models (https://www.frames.
gov/models). Batch-processing scripts to execute multiple
runs of a model are useful for stochastic models that must be
run multiple times for a given scenario, and models with input
and output structures that are easy to understand facilitate
ready parameterization, calibration, and implementation.

Model Assessment and Selection

Now it is time to start evaluating potential models. Model
users can step through each criterion and rank candidate
models against the model selection criteria using a well-
documented rating system. The ranking process could be re-
corded in a spreadsheet in which candidate models are listed
as rows, criteria as columns, and each model is rated via a
numbering system that evaluates its appropriateness along a
scale. To account for varying importance among criteria, a
weighting system can be developed; for example, a user
may place a higher weight on criteria that must be met for
the project to succeed, such as available expertise or comput-
ing resources. Rankings multiplied by the weights summa-
rized across all the model selection criteria will often identify
one or two models that stand out as best fits for the project.
This process will also identify areas of possible compromise
in project objectives; if the objective is impossible to meet
with the identified slate of models, then it can be revised to
reflect the attributes of candidate models.

Conclusion

George Box, in a 1979 paper, wrote “…it would be very
remarkable if any system existing in the real world could
be exactly represented by any simple model. However, cun-
ningly chosen parsimonious models often do provide re-
markably useful approximations…For such a model there
is no need to ask the question “Is the model true?” If “truth”
is to be the “whole truth” the answer must be “No.” The only
question of interest is “Is the model illuminating and use-
ful?”” [81]. We feel that the most important thing to know
when selecting a model is that there is no perfect model for
any modeling project. Even models that are built specifical-
ly for the modeling project have limitations, and in model-
ing, compromises are invariably made to accommodate
timelines, computing resources, and data constraints over
model complexity. However, a concrete plan describing
modeling objectives and project details and comparison of
available models with well-written criteria will simplify the
process of model selection.
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